Results for a Code-to-Code Comparison of alaska/Wind, BLADED, FAST, and FLEX5

The project has been supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) based on a decision of the German Federal Parliament. The sole responsibility for the content of this publication lies with the authors. FKZ: AZ 0327681

Dr.-Ing. W. Moser, Nordex Energy GmbH M. Taubert, Institut für Mechatronik Dr. rer. nat. H.O. Wulf, TÜV Nord SysTec GmbH & Co. KG Chemnitz, April 2011

Institut für Mechatronik e.V. Reichenhainer Straße 88 09126 Chemnitz

www.ifm-chemnitz.de

The Institute of Mechatronics developed the multibody simulation software alaska. For the simulation of the dynamic behaviour of complete wind turbines, the add-on module alaska/Wind is available. alaska/Wind contains the full functionality to compute aerodynamic and structural loads on wind turbines. The most of wind turbine computations for design and certification will currently be done with sectoral software tools like GH BLADED, FAST, and FLEX5. These tools have been validated over the years with the help of comparative calculations and measurement results. They are recognized by certification authorities and set the industry standard.

This report is an extension of our validation report [1]. In this document, you will find a short description of every defined load case and all the recorded results for every tested code. Please refer to our validation report for a more detailed description of the test load cases and a evaluation of results.

We modeled an approximation of the Nordex N90 turbine using alaska/Wind, BLADED, FAST, and FLEX5. The Nordex N90 is a 2.5 MW, three bladed, pitch controlled variable speed upwind turbine. Because we compared the structural and aerodynamic response of the models, it was much more important to get the same properties of every model rather than an accurate model of the real turbine itself. To reduce the effect of geometric parameters on the aerodynamic response, the turbine model got no cone and tilt angle and the blades were not pre-bent. For the validation of the aerodynamic forces, a simple structural model has been used. It consists of seven rigid bodies (three blades, hub, nacelle, tower, generator), five revolute joints (pitch, yaw, main bearing) and a fixed joint between tower and foundation.

Rotor diameter	90 m
Number of blades	3
Hub height	78.5 m
Tower height	77 m
Rotor shaft tilt angle	0 °
Blade cone angle	0 °
Gearbox ratio	71.8

Model Outputs

Name	Description	Unit
MZN	Rotor torque	kNm
FZN	Rotor thrust force	kN
MXB1	Blade 1 pitching moment at the blade root, in a coordinate system which does not pitch with the blade	kNm
MYB1	Blade 1 out-of-plane moment at the blade root, in a coordinate system which does not pitch with the blade	kNm
MZB1	Blade1 in-plane moment at the blade root, in a coordinate system which does not pitch with the blade	kNm
Yaw Mx	Tower-top yaw bearing yaw moment	kNm
Yaw My	Nonrotating tower-top yaw bearing pitch moment	kNm
Yaw Mz	Nonrotating tower-top yaw bearing roll moment	kNm
VNAV	Total hub-height wind speed magnitude	m/s
NRot	Rotor speed	rpm
Tip deflection flapwise	Blade 1 tip deflection flapwise	m
Tip deflection edgewise	Blade 1 tip deflection edgewise	m

LCGroup I_Structure Structural Load Cases

		-	•	-	-	Tu	rbine Mode	el	•			Simulatio	n Control
LC Id	Aerodynamic Forces	Linearized Model	Gravity	Rotor DOF	Blade DOF 2 Flap, 1 Edge	Tower DOF 2 side-to-side 2 fore-aft	Pitch	Yaw	Rotor IC	Generator / Motor	Demanded Rotor Speed	Time Step	Ttotal
							controlled/	controlled/					
	on/off	on/off	on/off	on/off	on/off	on/off	fixed	fixed	[rpm]	on/off	[rpm]	[s]	[s]
S1	off	off	off	on	off	off	fixed, 0°	fixed, 0°	0	on	15	0,02	60
S2	off	off	off	off	off	off	controlled	fixed, 0°	0	off	-	0,02	60
S3	off	off	off	off	off	off	fixed, 0°	controlled	0	off	-	0,02	60
S4	off	on	off	off	on	off	fixed, 0°	fixed, 0°	0	off	-	0,02	0
S5	off	on	off	off	off	on	fixed, 0°	fixed, 0°	0	off	-	0,02	0

Compute aerodynamic forces off

The load case group LCGroup I_Structure defines load cases for the validation of the structural model. The computation of aerodynamic forces has been switched off for all models. With the load cases S1-S3, the mass and inertia parameters has been validated. Therefore, a demanded motion has been applied at each joint (rotor, pitch, yaw) by the use of a PI controller. The PI controller has been implemented as a Dynamic Link Library (DLL) in the style of the BLADED code. The codes alaska/Wind and FAST provide a BLADED-style DLL interface. For FLEX5, the PI controller model has directly been implemented in the source code of FLEX5. With the load cases S4 and S5, the elastic blade and tower model has been validated.

Load Case LC_S1, Aerodynamic Forces off, Generator is used in a Motor Mode

- the generator is used in a motor mode, the motor torque has been provided by PI speed controller
- the motor accelerates the rotor up to a constant rotor speed of 15 rpm
- except for the rotor rotational degree of freedom all other degrees are locked in the turbine model

Load Case LC_S1, Aerodynamic Forces off, Generator is used in a Motor Mode

- deviations in out-of-plane moment and pitching moment because of simplified structural blade models in BLADED, FAST, and FLEX5
- missing moments of deviation J_{23}, J_{32}
- if a principal axis of the rotor blade does not align with the rotor axis you will get moments of deviation which cause the angular momentum

 $M = J\dot{\omega} + \widetilde{\omega}J\omega$

$$M = \begin{bmatrix} -J_{23} \cdot \dot{\omega}_3^2 \\ J_{23} \cdot \dot{\omega}_3 \\ J_{33} \cdot \dot{\omega}_3 \end{bmatrix} \quad \begin{array}{c} \text{- pitching moment} \\ \text{- out-of-plane moment} \\ \text{- in-plane moment} \\ \end{array}$$

Load Case LC_S2, Aerodynamic Forces off, Pitch postion controled

In load case LC_S2, the model contains only a rotational degree of freedom for the pitch joint. To validate the principal moments of inertia about the blade pitching axis, a constant pitching acceleration was necessary. As you can see, the dynamic of the pitch actuator is only considered in alaska/Wind.

$\varphi = \frac{\pi}{7200} \cdot t^2$	
$\dot{\varphi} = \frac{\pi}{3600} \cdot t$	
$\ddot{\varphi} = \frac{\pi}{3600}$	

In load case LC_S3, the model contains only a rotational degree of freedom for the yaw joint. For validation the principal moments of inertia about the yaw, pitch, and roll axis, a constant yaw acceleration was necessary.

$$\varphi = \frac{\pi}{7200} \cdot t^2$$
$$\dot{\varphi} = \frac{\pi}{3600} \cdot t$$
$$\ddot{\varphi} = \frac{\pi}{3600}$$

Yaw-Winkel [deg]

0

In load case LC S4, the frequencies and mode shapes of the reference blade have been compared. All codes use a modal representation of the blade structure. A modal analysis calculation of a finite element model of the blade structure is performed at first, to compute the frequencies and mode shapes which are needed for any subsequent calculation. In all the validated codes, the finite element model of the blade structure is based on a three-dimensional beam element.

Comparison of frequencies

• The finite element model representation of the reference blade and the modal analysis calculation were performed by

the following codes ala/Flex, BModes, FLEX5, and BLADED.

Mode	Mode Type	F			
Number	51	ala/Flex	BModes	FLEX5	BLADED
1	Out-of-plane mode	0.7427	0.7427	0.741	0.743
2	In-plane mode	1.3505	1.351	1.3532	1.351
3	Out-of-plane mode	2.0497	2.0501	2.0385	2.051
4	Out-of-plane mode	4.3868	4.3884	-	4.39
5	In-plane mode	4.7927	4.7987	4.8061	4.8

Mode shapes of the reference blade

In load case LC S5, the frequencies and mode shapes of the reference tower have been compared. All codes use a modal representation of the tower structure. A modal analysis calculation of a finite element model of the tower structure is performed at first, to compute the frequencies and mode shapes which are needed for any subsequent calculation. In all the validated codes, the finite element model of the tower structure is based on three-dimensional beam element. In BLADED, a finite element model of the complete wind turbine will be used for the modal analysis. This model is more detailed than a model with a tower and a tower-top mass as used in ala/FLEX, BModes, and FLEX5. Therefore, some deviations in higher frequencies occur.

Comparison of frequencies

• The finite element model representation of the reference tower and the modal analysis calculation were performed by

the codes ala/Flex, BModes, FLEX5, and BLADED.

Mode	Mode Type	F			
Number	,	ala/Flex	BModes	FLEX5	BLADED
1	fore-aft mode	0.377	0.377	0.366	0.369
2	side-to-side mode	0.377	0.377	0.366	0.366
3	fore-aft mode	3.375	3.384	3.119	2.467
4	side-to-side mode	3.375	3.384	3.119	2.12

Mode shapes of the reference tower

LCGroup I

Aerodynamics							Turbine Model							Wind	Simulation Control		
LC Id	Wake Modell	Dynamic Stall	Tip Loss Model	Tower Shadow	Wind Shear Model	Eval Time Step	Gravity	Rotor DOF	Pitch	Yaw	Rotor IC	Generator / Motor	VHub	YawErr	Turbulence	Time Step	T _{total}
									controlled/	controlled/			const/var				
	Eql/GDW	None/Bed/Oye	on/off	on/off	None/Log/Exp	[s]	on/off	on/off	fixed	fixed	[rpm]	on/off	[m/s]	const/var	[on/off]	[s]	[s]
1	Eql	None	on	off	None	0.02	off	off	fixed, 0°	fixed, 0°	0	off	8	0°	off	0,02	60
3	Eql	None	on	off	None	0.02	off	off	fixed, 0°	fixed, 0°	0	off	var 1	0°	off	0,02	100
4	Eql	None	on	off	None	0.02	off	on	fixed, 0°	fixed, 0°	0	off	var 1	0°	off	0,02	300
5	Eql	None	on	off	None	0.02	off	on	fixed, 0°	fixed, 0°	0	off	8	0°	off	0,02	300
7	Eql	None	on	off	None	0.02	off	on	fixed, 0°	fixed, 0°	8	off	var 3	0°	off	0,02	500
8	Eql	None	on	off	None	0.02	off	on	fixed, 10°	fixed, 0°	8	off	var 4	0°	off	0,02	350

wind shear off

tower shadow off

rigid turbine model

The load case group LCGroup I defines test scenarios for the validation of the aerodynamic loads. In load case 1 a parked turbine has been simulated to validate the aerodynamic forces without the influence of the rotor rotation. The load cases 4 to 8 simulate the speed up of a rigid turbine model under different wind and model conditions. The generator is switched off, so the rotor will accelerate without an external load.

Load Case LC 1, const. Wind = 8 m/s, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 1, const. Wind = 8 m/s, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°

- results with a very good agreement
- a validated aerodynamic blade model for a fixed rotor

Load Case LC 3, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°

74

alaska FAST FLEX5

BLADED

90

100

Load Case LC 3, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 4, var. Wind, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 4, var. Wind, Pitch fixed 0°, Yaw fixed 0°

- with an increase in the rotor speed the deviation in the pitching moment increases in alaska/Wind
 - this is caused by the missing moments of deviation for the rotor blades in BLADED, FAST, and FLEX5 (load case LC S1)
- at the point of maximum power, the FLEX5 curve is superelevated

Load Case LC 5, const. Wind = 8 m/s, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 5, const. Wind = 8 m/s, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 7, var. Wind, Pitch fixed 0°, Yaw fixed 0°

- good agreement in normal operating range
- reaching the validity limits of the aerodynamic model, a different behaviour occurs

Load Case LC 7, var. Wind, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 8, var. Wind, Pitch fixed 10°, Yaw fixed 0°

Load Case LC 8, var. Wind, Pitch fixed 10°, Yaw fixed 0°

Time [s]

LCGroup II

	Aerodynamics								Tur	bine Mode	I		Wind	Simulation Control				
LC Id	Wake Modell	Dynamic Stall	Tip Loss Model	Tower Shadow	Wind Shear Model	Eval Time Step	Gravity	Rotor DOF	Pitch	Yaw	Rotor IC	Generator / Motor	Demanded Rotor Speed	Мињ	YawErr	Turbulence	Time Step	T _{total}
	Eql/	None/							controlled/	controlled/				const/var				
	GDW	Bed/Oye	on/off	on/off	None/Log/Exp	[s]	on/off	on/off	fixed	fixed	[rpm]	on/off	[rpm]	[m/s]	const/var	[on/off]	[s]	[s]
4_1	Eql	None	on	off	None	0.02	off	on	fixed, 0°	fixed, 0°	0	on	15	var 1	0°	off	0,02	300
5_1	Eql	None	on	off	None	0.02	off	on	fixed, 0°	fixed, 0°	0	on	15	8	0°	off	0,02	300
7_1	Eql	None	on	off	None	0.02	off	on	fixed, 0°	fixed, 0°	8	on	15	var 3	0°	off	0,02	500
8_1	Eql	None	on	off	None	0.02	off	on	fixed, 10°	fixed, 0°	8	on	15	var 4	0°	off	0,02	350

wind shear off

tower shadow off

- rigid turbine model
- stationary rotor speed

In LCGroup II the load cases 4 to 8 of LCGroup I has been repeated with a stationary rotor speed. The rotor has been accelerated up to the predefined rotor speed and then has been kept constantly by a PI speed controller. The PI controller worked like a motor and produced an equivalent reaction torque of the aerodynamic moment of the rotor.

Load Case LC 4_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 4_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 5_1, const. Wind = 8 m/s, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 5_1, const. Wind = 8 m/s, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 7_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 7_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°

Load Case LC 8_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 10°, Yaw fixed 0°

Load Case LC 8_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 10°, Yaw fixed 0°

LCGroup III Skewed Wake Correction

			Aero	dynan	nics		Turbine Model								Wind	Simulation Control		
LC Id	Wake Modell	Dynamic Stall	Tip Loss Model	Tower Shadow	Wind Shear Model	Eval Time Step	Gravity	Rotor DOF	Pitch	Yaw	Rotor IC	Generator / Motor	Demanded Rotor Speed	qnHA	YawErr	Turbulence	Time Step	Ttotal
	Eql/	None/							controlled/	controlled/				const/var				
	GDW	Bed/Oye	on/off	on/off	None/Log/Exp	[s]	on/off	on/off	fixed	fixed	[rpm]	on/off	[rpm]	[m/s]	const/var	[on/off]	[s]	[s]
9	Eql	None	on	off	None	0.02	off	off	fixed, 10°	fixed, 0°	0	off	-	8	20°	off	0,02	60
10	Eql	None	on	off	None	0.02	off	on	fixed, 10°	fixed, 0°	0	on	12	8	20°	off	0,02	200
11	Eql	None	on	off	None	0.02	off	on	fixed, 10°	fixed, 0°	0	on	12	8	40°	off	0,02	200
12	Eql	None	on	off	None	0.02	off	on	fixed, 10°	fixed, 0°	0	on	6	8	60°	off	0,02	200
13	Eql	None	on	off	None	0.02	off	on	fixed, 0°	fixed, 0°	0	on	1	8	80°	off	0,02	200
14	Eql	None	on	off	None	0.02	off	on	fixed, 10°	fixed, 0°	0	off	-	8	var1	off	0,02	320

wind shear off

- tower shadow off
- rigid turbine model
- stationary rotor speed

In LCGroup III, the wind turbine operates at different yaw angles relative to the incoming wind. The load cases 9 to 14 are used to validate the skewed wake correction models.

Load Case LC 9, const. Wind = 8 m/s, Rotor fixed, Pitch fixed 10°, Yaw fixed 0°, WindYaw 20°

Load Case LC 9, const. Wind = 8 m/s, Rotor fixed, Pitch fixed 10°, Yaw fixed 0°, WindYaw 20°

Load Case LC 10, const. Wind = 8 m/s, Rotor stationary 12 rpm, Pitch fixed 10°, Yaw fixed 0°, WindYaw 20°

Load Case LC 10, const. Wind = 8 m/s, Rotor stationary 12 rpm, Pitch fixed 10°, Yaw fixed 0°, WindYaw 20°

Load Case LC 11, const. Wind = 8 m/s, Rotor stationary 12 rpm, Pitch fixed 10°, Yaw fixed 0°, WindYaw 40°

Load Case LC 11, const. Wind = 8 m/s, Rotor stationary 12 rpm, Pitch fixed 10°, Yaw fixed 0°, WindYaw 40°

Load Case LC 12, const. Wind = 8 m/s, Rotor stationary 6 rpm, Pitch fixed 10°, Yaw fixed 0°, WindYaw 60°

Load Case LC 12, const. Wind = 8 m/s, Rotor stationary 6 rpm, Pitch fixed 10°, Yaw fixed 0°, WindYaw 60°

Time [s]

Load Case LC 13, const. Wind = 8 m/s, Rotor stationary 1 rpm, Pitch fixed 0°, Yaw fixed 0°, WindYaw 80°

Load Case LC 13, const. Wind = 8 m/s, Rotor stationary 1 rpm, Pitch fixed 0°, Yaw fixed 0°, WindYaw 80°

Load Case LC 14, const. Wind = 8 m/s, Pitch fixed 10°, Yaw fixed 0°, WindYaw var.

Time [s]

Load Case LC 14, const. Wind = 8 m/s, Pitch fixed 10°, Yaw fixed 0°, WindYaw var.

LCGroup I_Elastic

	Aerodynamics							Turbine Model										Wind		
LC Id	Wake Modell Dynamic Stall		Tip Loss Model	Tower Shadow	Wind Shear Model	Eval Time Step	Gravity	Rotor DOF	Blade DOF 2 Flap, 1 Edge	Tower DOF 2 side-to-side 2 fore-aft	Pitch	Yaw	Rotor IC	Generator / Motor	Demanded Rotor Speed	Инир	YawErr	Turbulence	Time Step	T _{total}
	Eql/	None/	on/	on/	None/						controlled/	controlled/				const/	const/			
	GDW	Bed/Oye	off	off	Log/Exp	[s]	on/off	on/off	on/off	on/off	fixed	fixed	[rpm]	on/off	[rpm]	var [m/s]	var	[on/off]	[s]	[s]
E1	Eql	None	on	off	None	0.02	off	off	on	off	fixed, 0°	fixed, 0°	0	off	-	8	0°	off	0,02	300
E3	Eql	None	on	off	None	0.02	off	off	on	off	fixed, 0°	fixed, 0°	0	off	-	var1	0°	off	0,02	300
E4_1	Eql	None	on	off	None	0.02	off	on	on	off	fixed, 0°	fixed, 0°	0	on	15	var2	0°	off	0,02	300
E5_1	Eql	None	on	off	None	0.02	off	on	on	off	fixed, 0°	fixed, 0°	0	on	15	8	0°	off	0,02	300
E7_1	Eql	None	on	off	None	0.02	off	on	on	off	fixed, 0°	fixed, 0°	8	on	15	var3	0°	off	0,02	500
E8_1	Eql	None	on	off	None	0.02	off	on	on	off	fixed, 10°	fixed, 0°	8	on	15	var4	0°	off	0,02	350
E15	Eql	None	on	off	None	0.02	off	off	off	on	fixed, 0°	fixed, 0°	0	off	-	var5	0°	off	0,02	100

wind shear off

- tower shadow off
- flexible blade model
- flexible tower model

In LCGroup I_Elastic, the load cases of LCGroup II has been repeated with flexible blades or a flexible tower. The effect of flexible components on the turbine model behavior has been investigated. As results, blade and tower forces, moments and deflections are recorded.

The load case LC E1_3 is equivalent to load case LC E1 except that the new Multibody Dynamics BLADED V4 has been used instead of BLADED V3.82. According to GL Garrad Hassan, in BLADED V4 they switched from rotor modes to fully coupled individual blade modes which are valid for any pitch angle. This blade model seems to be similar to the flexible body approach used in alaska/Wind for the blade model. Running load case LC E1 with BLADED V4 gave us the opportunity to investigate some of the recognized differences in the results of LC E1 and we also were able to validate the flexible body blade model of alaska/Wind in comparison with BLADED V4.

Blade 1 in-plane moment for BLADED V3.82 and BLADED V4

Blade 1 edgewise tip deflection for BLADED V3.82 and BLADED V4

frequency spectrum of blade 1 in-plane moment for BLADED V3.82 and BLADED V4

Load Case LC E3, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E3, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E3, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E4_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E4_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E4_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

The load case LC E4_3 is equivalent to load case LC E4_1 except that the new Multibody Dynamics BLADED V4 has been used instead of BLADED V3.82. Running load case LC E4_1 with BLADED V4 gave us the opportunity to investigate some of the recognized differences in the pitching moment and the edgewise tip deflection.

Load Case LC E4_3, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible, BLADED V4

Load Case LC E4_3, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible, BLADED V4

Load Case LC E4_3, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible, BLADED V4

Blade 1 edgewise tip deflection for BLADED V3.82 and BLADED V4

Load Case LC E4_3, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible, BLADED V4

Pitching moment for BLADED V3.82 and BLADED V4

Load Case LC E5_1, const. Wind = 8 m/s, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E5_1, const. Wind = 8 m/s, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E5_1, const. Wind = 8 m/s, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E7_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E7_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E7_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 0°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E8_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 10°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E8_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 10°, Yaw fixed 0°, Rotor Blades flexible

Load Case LC E8_1, var. Wind, Rotor stationary 15 rpm, Pitch fixed 10°, Yaw fixed 0°, Rotor Blades flexible

The load case LC E15 has been used for validating the modal tower model in connection with the turbine model. For this load case, the turbine model has been parked and all degree of freedom are locked except the tower modes. At the beginning of the simulation, a tower vibration has been induced by a gust of wind.

Load Case LC E15, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Tower flexible

Load Case LC E15, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Tower flexible

Load Case LC E15, var. Wind, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Tower flexible

LCGroup I_Turb

	Aerodynamics							Turbine Model							Wind			Simulation Control	
LC Id	Wake Modell	Dynamic Stall	Tip Loss Model	Tower Shadow	Wind Shear Model	Eval Time Step	Gravity	Rotor DOF	Blade DOF 2 Flap, 1 Edge	Pitch	Yaw	Rotor IC	Generator / Motor	qnHV	YawErr	Turbulence	Time Step	Ttotal	
		None/								controlled/	controlled/			const/var					
	Eql/GDW	Bed/Oye	on/off	on/off	None/Log/Exp	[s]	on/off	on/off	on/off	fixed	fixed	[rpm]	on/off	[m/s]	const/var	[on/off]	[s]	[s]	
ET1	Eql	None	on	off	None	0.02	off	off	on	fixed, 0°	fixed, 0°	0	off	var1	0°	on	0,02	640	
T2	Eql	None	on	off	None	0.02	off	on	off	fixed, 30°	fixed, 0°	11	off	var1	0°	on	0,02	640	
ET2	Eql	None	on	off	None	0.02	off	on	on	fixed, 30°	fixed, 0°	11	off	var1	0°	on	0,02	640	

wind shear off

tower shadow off

- flexible blade model
- turbulent wind

In LCGroup I_Turb, the wind turbine operates under turbulent wind conditions. The necessary full-field turbulent wind has been generated by TurbSim [2] using IEC Kaimal spectral model. TurbSim allows the generation of BLADED-style turbulence files which are also able to be used in alaska/Wind and FAST. FLEX5 uses a polar turbulence format instead of a rectangular format for the turbulence field description. For the FLEX5 model, a sepearate polar turbulence field based on IEC Kaimal spectral model has been generated using Vindsim7. The validation of the turbulence wind field has been carried out in load case LC T1 from load case group LCGroup I_TurbSim (page 119).

Wind Turbine Design Codes: A Comparison of alaska/Wind, BLADED, FAST, and FLEX5

600

0

-0.002 -0.004 -0.006

-0.008

-0.01

100

200

300

Time [s]

400

500

The load case LC ET1_3 is equivalent to load case LC ET1 except that the new Multibody Dynamics BLADED V4 has been used instead of BLADED V3.82.

frequency spectrum of blade 1 in-plane moment for BLADED V3.82 and BLADED V4

frequency spectrum of Rotor torque for BLADED V3.82 and BLADED V4

Load Case LC T2, turb. Wind = 15 m/s, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Rigid Turbine Model

Load Case LC T2, turb. Wind = 15 m/s, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Rigid Turbine Model

Load Case LC T2, turb. Wind = 15 m/s, Rotor fixed, Pitch fixed 0°, Yaw fixed 0°, Rigid Turbine Model

The load case LC ET2_3 is equivalent to load case LC ET2 except that the new Multibody Dynamics BLADED V4 has been used instead of BLADED V3.82.

frequency spectrum of blade 1 out-of-plane moment for BLADED V3.82 and BLADED V4

frequency spectrum of blade 1 in-plane moment for BLADED V3.82 and BLADED V4

frequency spectrum of Rotor torque for BLADED V3.82 and BLADED V4

LCGroup IV

		Ae		-	Turbine	Model	•	Wind			Simulation Control						
LC Id	Wake Modell	Dynamic Stall	Tip Loss Model	Tower Shadow	Wind Shear Model	Eval Time Step	Gravity	Rotor DOF	Pitch	Yaw	Rotor IC	Generator / Motor	qnHV	YawErr	Turbulence	Time Step	T _{total}
									controlled/	controlled/			const/var				
	Eql/GDW	None/Bed/Oye	on/off	on/off	None/Log/Exp	[s]	on/off	on/off	fixed	fixed	[rpm]	on/off	[m/s]	const/var	[on/off]	[s]	[s]
15	Eql	Bed	on	off	None	0.02	off	off	fixed, 90°	fixed, 0°	0	off	60	var1	off	0,001	6
15_1	Eql	Oye	on	off	None	0.02	off	off	fixed, 90°	fixed, 0°	0	off	60	var1	off	0,001	6
16	Eql	Bed	on	off	None	0.02	off	off	fixed, 90°	fixed, 0°	0	off	60	var2	off	0,001	6
16_1	Eql	Oye	on	off	None	0.02	off	off	fixed, 90°	fixed, 0°	0	off	60	var2	off	0,001	6

Rotor fixed

- Rigid rotor blades without twist and pre-bent
- Pitch fixed 90°
- Cyclic variations of the angle of attack with 2 Hz

by a change in wind yaw

Dynamic stall is a non-linear, unsteady aerodynamic effect that occurs when the angle of attack of the airfoils change rapidly. This will subsequently affect the lift of the airfoils. In load case group LCGroup IV different dynamic stall models has been validated. alaska/Wind, BLADED, and FAST support a Beddoes-Leishmann [4] stall model where the Stig Øye [5] stall model is available in alaska/Wind and FLEX5.

Load Case LC 16, const. Wind = 60 m/s, Rotor fixed, Pitch fixed 90°, Yaw fixed 0°, wind yaw cyclic variations 2Hz

Load Case LC 16_1, equivalent to load case LC 16 including Stig Øye stall model

LCGroup I_TurbSim Comparison of Synthetic Turbulent Wind Fields

		•	•	Simulation Control									
LC Id	Turbulence Model	Mean Wind Speed	Turbulence Intensity	Wind Shear	Grid Width	Grid Height	Reference Height	Hub Height	Grid Points vertical	Grid Points horizontal	Turbulence Seed	Time Step	T _{total}
		[m/s]	[%]	[on/off]	[m]	[m]	[m]	[m]				[s]	[s]
T1	Kaimal	15	18	off	100	100	78.55	78.55	9	9	13	0,05	819.2

For the simulation with turbulent wind, a full-field turbulent wind description is necessary. This can be get by measured data or a wind field simulator. In load case LC T1, a comparison of the results of different wind field simulators based on the same IEC Kaimal spectral model has been carried out.

Load Case LC T1, IEC Kaimal spectral model

Institut für Mechatronik

LCGroup I_TS Comparison of tower shadow models

		Aerodynamics							Tu	•		Wind		Simulation Control				
LC Id	Wake Modell	Dynamic Stall	Tip Loss Model	Tower Shadow	Wind Shear Model	Eval Time Step	Gravity	Rotor DOF	Pitch	Yaw	Rotor IC	Rotor Azimuth	Generator / Motor	9n HA	YawErr	Turbulence	Time Step	Ttotal
		None/	a/aff		None/	[-]		a.a./a#	controlled/	controlled/	[const/var	oonot/vor	[a.a./a#]	[-]	[0]
	Edi/GDW	Deu/Oye	OU/OIL	OU/OIL	LUG/Exp	[S]	OU/OL	OU/OL	lixed	lixed	[rpm]		OU/OL	[III/S]	const/var	[on/oπ]	[S]	[S]
TS1	Eql	None	on	on	None	0.02	off	off	fixed, 0°	fixed, 0°	0	0° - 360°	off	8	0°	off	0,02	2

The wind turbine tower influences the local velocity field around the tower. In front of the tower, the wind speed will decrease and increase along the sides. This effect can be considered by the use of tower influence models. They are usually based on a potential flow method around a circular cylinder. In load case LC TS1, the different tower influence models have been compared. For selected blade stations, the wind speed has been recorded during the variation of the rotor azimuth angle.

Load Case LC TS1, const. Wind = 8 m/s, variation of rotor azimuth angle, Pitch fixed 0°, Yaw fixed 0°

To be able to make a quantitative classification of load case simulation, a CPU time comparison for selected load cases has been carried out. The different runs have been done by a HP workstation with a 2 GHz dual-core processor and an 8 GB RAM. In alaska, FAST, and FLEX5 the simulation has been carried out in a batch mode without a graphical user interface. Currently, BLADED does not support a mode without a graphical user interface. The recorded CPU time for BLADED is therefore not very meaningful, and is given only for completeness!

		CPU - TIME [s]								
	Total simulation time [s]	alaska	BLADED 3.82 / 4	FAST	FLEX5					
5	300	30,4	104 / 156	13,7	13,9					
ET1	640	84,9	170 / 216	33,6	30,5					
ET2	640	106	223 / 387	33,8	31,3					
T2	640	62,2	224 / 331	31,2	30,5					

[1] Wind Turbine Design Codes: A Validation of alaska/Wind in comparison with BLADED, FAST, and FLEX5, Online: URL: <u>http://www.ifm-chemnitz.de/produkte-html/alaWind_Downloads.html</u> [2011-29-04]

[2] NWTC Design Codes (TurbSim by Neil Kelley, Bonnie Jonkman), Online: URL: http://wind.nrel.gov/designcodes/preprocessors/turbsim/ [2011-03-02]

[3] Hansen, M.O.L.: Aerodynamics of Wind Turbines Application (Second Edition), Earthscan in the UK, London 2008

[4] Beddoes, T.S., Leishmann, J.G.: A Semi-Empirical Model for Dynamic Stall, Journal of the American Helicopter Society, July 1989

[5] Øye, S.: Dynamic stall, simulated as time lag of separation by Stig Øye, Department of Fluid Mechanics Technical University of Denmark